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Abstract
We consider the crossing and non-crossing O(1) dense loop models on a semi-
infinite strip, with inhomogeneities (spectral parameters) that preserve the
integrability. We compute the components of the ground-state vector and obtain
a closed expression for their sum, in the form of Pfaffian and determinantal
formulae.

PACS numbers: 02.10.Ab, 05.50.+q
Mathematics Subject Classification: 05A19, 82B20

1. Introduction

The interplay between statistical mechanics and combinatorics is an everlasting one, and takes
many different guises as time goes by. Some activity has developed recently around conjectural
observations in [1–3] on the ground-state vectors of some simple two-dimensional statistical
models of loops, which may alternatively be viewed as one-dimensional quantum (spin) chains.
As it turned out, and among other integer numbers, the total number of alternating sign matrices
(ASM) popped out of the study of the ground-state vector of the integrable quantum spin chain
corresponding to the dense O(1) loop model on a semi-infinite cylinder of square lattice. This
number counts the total number of configurations of the ice model on a square with domain
wall boundary conditions. It also counts the configurations of the fully packed loop model on a
square grid, yet another type of loop model, now with two kinds of loops crossing or touching
at each vertex, and connecting by pairs the points at the periphery of the grid. This opened up
the road to many more observations turned into conjectures, regarding correlation functions as
well as other boundary conditions, and all involving integer sequences (see for instance [4–7]).
An activity also developed in trying to relate some particular subsets of configurations of the
fully packed loop model to rhombus tilings of planar domains with possible conic singularities
[8–12].

The idea of considering inhomogeneous versions of the loop models came with trying to
modify the boundary conditions of the loop model on a cylinder by introducing dislocations in
the underlying lattice [13, 14], and it was realized and proved in [15] that the full multiparameter
generalization of the loop model that preserves its integrability actually leads to a ground-
state vector whose sum of suitably normalized components coincides with the so-called
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Izergin–Korepin determinant, defined as the partition function of the inhomogeneous six
vertex model on a square grid with domain wall boundary conditions [16, 17]. This allowed
us, as a by-product, to prove the conjecture of [1] that the sum of suitably normalized entries of
the ground-state vector of the O(1) spin chain is the total number of alternating sign matrices.
The general proof of [15] takes full advantage of the integrability of the model, and transforms
intertwining relations for the transfer matrix of the loop model into local recursion relations
for the ground-state vector’s entries.

Another loop model, very similar in nature to the O(1) loop model, also includes the
possibility for loops of crossing one another. This is the so-called crossing or Brauer O(1)
loop model, for which many combinatorial conjectures were made in [18], surprisingly relating
this quantum chain to degrees of components of the commuting variety, computed in [19].
The same techniques as those used in [15], making full use of the integrability of the loop
model, were applied to this case in [20], allowing us to prove most of the conjectures of [18].
The algebro-geometric interpretation of these results was extended recently in [21].

The two works [20] and [15] are only concerned with loop models wrapped on a cylinder,
i.e. with periodic boundary conditions. The aim of the present paper is to investigate the
case of open boundary conditions, namely of (crossing or non-crossing) inhomogeneous loop
models defined on a semi-infinite strip of square lattice. By adapting the techniques of
[20, 15], we will derive sum rules for the components of the corresponding ground-state
vectors. The main outcome will be some particularly simple Pfaffian or determinantal formulae
for the state sum as an explicit function of the model’s inhomogeneities (spectral parameters).
In the case of crossing loops, we will obtain a ‘reflected’ generalization of the results of [20],
while in the non-crossing case we will be able to identify the state sum with the partition
function of so-called U-turn symmetric alternating sign matrices of [22]. Let us stress at this
point that, as opposed to the crossing loop case where our proof is rigorous and complete,
the non-crossing case relies on an assumption we make on the total degree of the vector’s
components, as functions of the spectral parameters. Although we have no doubt that this
is true, proving it would certainly require a lot of effort, and we prefer to concentrate on the
consequences of this property on the ground-state vector.

The paper is organized as follows. Section 2 is devoted to the case of crossing loops
with open boundaries. After giving definitions in section 2.1, we show in section 2.2 the
fundamental intertwining relations satisfied by the transfer matrix of the model. Solving for
all the subsequent relations leads to the solution of section 2.3 in the form of an explicit
recursion relation defining the ‘fundamental’ entry of the ground-state vector, out of which
all others are iteratively constructed. The above relations are turned into recursion relations
for all entries of the vector in section 2.4, as well as into symmetry properties of the entries in
section 2.5. Using all these properties allows for proving two sum rules on the ground-state
vector components in section 2.6. Section 3 is concerned with the case of non-crossing loops.
We follow the same route: definitions (section 3.1), intertwining properties (section 3.2),
solution (section 3.3), recursion relations (section 3.4), symmetries (section 3.5), and finally
sum rule (section 3.6). A few concluding remarks are gathered in section 4, while samples of
entries of the ground-state vector are given in appendices A and B respectively for the crossing
and non-crossing case.

2. The inhomogeneous O(1) crossing loop model with open boundaries

2.1. Transfer matrix and basic relations

We consider the open boundary version of the inhomogeneous O(1) ‘Brauer’ crossing loop
model considered in [20]. The latter was defined on a square lattice wrapped on a semi-infinite
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1 2 3 4 5 61 2 3 4 5 6

Figure 1. A sample configuration of the Brauer loop model on a strip of width N = 6 (left). We have
indicated the corresponding open crossing link pattern of connection of the points 1, 2, 3, 4, 5, 6
(right).

cylinder of even perimeter, thus giving rise to periodic boundary conditions. We now consider
the same model on a square lattice that covers a semi-infinite strip of width N (even or odd),
with centres of the lower edges labelled 1, 2, . . . , N . On each face of this domain of the square
lattice, we draw at random, say with respective probabilities ai, bi, ci in the ith column (at the
vertical of the point labelled i) one of the three following configurations

(2.1)

The strip is moreover supplemented with the following pattern of fixed configurations of loops
on the (left and right) boundaries:

1  2 . . . N

(2.2)

In a given configuration, the points 1, 2, . . . , N are connected by pairs (except for one of
them if N is odd, in which case it is connected to the infinity along the strip). Such a pattern of
connection is called an open crossing link pattern. The set of open crossing link patterns on
N points is denoted by CLPN , and has cardinality (2n − 1)!! for N = 2n or N = 2n − 1. The
open crossing link patterns π ∈ CLPN span a complex vector space of dimension (2n − 1)!!,
with canonical basis {|π〉}π∈CLPN

. An example of loop configuration together with its link
pattern are depicted in figure 1.

One interesting question is to find for given probability weights ai, bi, ci , the relative
probabilities of the occurrence of the crossing link patterns π ∈ CLPN . The crucial property
of this loop model is that it is integrable for the following choice of probability weights:

a(u) = 2(1 − u)

(1 + u)(2 − u)
, b(u) = u(1 − u)

(1 + u)(2 − u)
, c(u) = 2u

(1 + u)(2 − u)
. (2.3)
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More precisely, the so-called R-matrix of the model is an operator acting on a vector space of
open crossing link patterns or any tensor product thereof, say at some points labelled i and j

of the link patterns, as follows:

Ri,j (z, w) =
z

w = a(z − w) + b(z − w) + c(z − w) (2.4)

Here z and w are the (arbitrary complex) spectral parameters attached respectively to the points
labelled i and j , and are carried, as well as the point labels, by the oriented straight lines in the
pictorial representation on the left. Each of the three possible configurations of boxes on the
right acts on open crossing link patterns as follows: the configuration must be connected by
its lower end to the point i and by its right end to the point j of the link patterns, thus forming
new patterns whose new points i and j are the upper and left ends of the box, respectively.
Alternatively, the R-matrix may act locally at points i, i + 1 on open crossing link patterns with
N points, via the permuted matrix Ř = PR:

Ři,i+1(z, w) = z−w

i+1i

= a(z − w) + b(z − w) + c(z − w)

= a(z − w)I ⊗ I + b(z − w)fi + c(z − w)ei (2.5)

for i = 1, 2, . . . , N − 1 and where P simply permutes the point labels, so that each label is
conserved along the vertical direction. We have displayed the matrix Ř as a linear combination
of the three local operators I ⊗ I, fi, ei, i = 1, 2, . . . , N − 1, which form the generators of
the Brauer algebra BN(1), subject to the relations:

e2
i = ei, f 2

i = I, eiei±1ei = ei, fifi+1fi = fi+1fifi+1,

[ei, ej ] = [ei, fj ] = [fi, fj ] = 0 if |i − j | > 1, fiei = eifi = ei,
(2.6)

and a few others involving both e’s and f ’s, all clear from the pictorial representation of the
action on link patterns, namely: I ⊗ I leaves the link patterns unchanged, fi crosses the links
terminating at points i and i + 1, and ei glues the two ends of links at i and i + 1 and adds up
a new link connecting i to i + 1. If a loop is formed in the process, it must simply be erased
(loops are given a weight 1 here, leading to the relation e2

i = ei).
Following Sklyanin [23], we also introduce a boundary operator Ki(z), whose action is

diagonal at the points labelled i = 1 or N, with matrix element 1, but whose effect is to switch
the spectral parameter z → −z attached to that point, with the pictorial representation

Ki(z) =

i

z

−z

(2.7)

In addition to the standard Yang–Baxter and unitarity relations (with additive spectral
parameters), reading pictorially

= and =

(2.8)
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The solution to these equations for which the Ř matrix is a linear combination of generators
I ⊗ I, ei, fi is essentially unique (up to unimportant redefinitions) and takes form (2.4).
Equation (2.8) is now supplemented by the boundary Yang–Baxter relations

=

z

−w

z−z −z

−www

(2.9)

and unitarity relation

Ki(z)Ki(−z) = I or =
z −z z z

(2.10)

on both sides of the strip.
The transfer matrix T (t |z1, z2, . . . , zN) of our model reads pictorially

z 1 z 2 z Nz 3 z N−1

t

−t

. . .

. . .

(2.11)

It acts from the vector space of open crossing link patterns with N points to itself. As a
consequence of the Yang–Baxter and boundary Yang–Baxter equations, the transfer matrices
at two distinct values of t commute.

We denote by �(N)(z1, z2, . . . , zN) the common ground-state vector of the T for fixed
values of the zi , namely such that

T (t |z1, z2, . . . , zN)�(N)(z1, z2, . . . , zN) = �(N)(z1, z2, . . . , zN). (2.12)

As T is a rational fraction of the zi , we normalize �N so that all its entries are coprime
polynomials of the zi . Picking say t = 0, we may view the entries of �(N) as the relative
probabilities of open link pattern connections in random crossing loop configurations with
inhomogeneous probabilities (ai, bi, ci) = (a(zi), b(zi), c(zi)) in each column i of the strip,
and equation (2.12) expresses nothing but the invariance of probabilities under the addition of
two rows to the semi-infinite cylinder (left and right boundaries are indeed invariant only under
translations of two lattice spacings). This interpretation is stricto sensu only valid in the range
of zi leading to ai, bi, ci ∈ [0, 1], in which case �(N) is the Perron–Frobenius eigenvector
of T.

A last remark is in order. It turns out that the case of odd size N = 2n − 1 may always
be recovered from that of even size N = 2n, upon taking z2n → ∞. Indeed, considering
the transfer matrix (2.11) of size N, we see that when zN → ∞, the two rightmost R-matrix
elements (acting at the point labelled N) both tend to fN , hence the action at point N decouples
from the transfer matrix, and we have the reduction T (t |z1, . . . , zN) → T (t |z1, . . . , zN−1)⊗I ,
reading pictorially

z 1z 1 . . .z 2 z 3 z N−1z N

=
t

−t
. . .

. . .z 2 z 3 z N−1z N

t

−t
. . .

(2.13)
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This implies that when zN → ∞, the eigenvector �(N)(z1, . . . , zN) becomes proportional (at
leading order in zN ) to �(N−1)(z1, . . . , zN−1). This allows for recovering the odd N case from
the even N one. Henceforth, throughout the paper and unless otherwise specified, we will
always assume that N is even, and write N = 2n.

2.2. Intertwining

As an immediate consequence of the Yang–Baxter equation, we have the intertwining property

T (t |z1, . . . , zi, zi+1, . . . , zN)Ři,i+1(zi, zi+1) = Ři,i+1(zi, zi+1)T (t |z1, . . . , zi+1, zi, . . . , zN)

(2.14)

for i = 1, 2, . . . , N − 1, also expressed pictorially as

z i+1 z i

z i z i+1

z i+1 z i

z i z i+1

=

(2.15)

Applying this to the eigenvector �(N) results in the relation

�(N)(z1, . . . , zi, zi+1, . . . , zN) = Ři,i+1(zi, zi+1)�
(N)(z1, . . . , zi+1, zi, . . . , zN). (2.16)

When written in components, the latter translates into two sets of local relations for the entries
of �(N) on the basis of open crossing link patterns, namely

�i�
(N)
π = �

(N)
fiπ

(2.17)

for all π with no little arch connecting points i, i + 1 and

�i�
(N)
π =

∑
π ′ �=π

eiπ
′=π

�
(N)
π ′ (2.18)

for all π with a little arch joining points i and i + 1, where �i and �i, i = 1, 2, . . . , N − 1,
are local divided difference operators acting on functions of (z1, . . . , zN) as

�i = (1 + zi − zi+1) (2∂i − τi)
1

1 + zi − zi+1

�i = (1 + zi − zi+1)

(
1 +

zi+1 − zi

2

)
∂i

(2.19)

where ∂i and τi act on functions f (z1, . . . , zN) as

∂if = τif − f

zi − zi+1
τif (z1, . . . , zi, zi+1, . . . , zN) = f (z1, . . . , zi+1, zi, . . . , zN). (2.20)

With these definitions, it is clear that �2
i = I , while �2

i = −�i .
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An important direct consequence of equation (2.17) is that �(N)
π vanishes when

zi+1 = 1 + zi if the link pattern π has no arch joining i and i + 1. This is easily deduced for
instance from the relation (2.16) with R as in (2.4): indeed, when zi+1 = 1 + zi, Ři,i+1 ∝ ei ,
and therefore only components with an arch joining i to i + 1 may be nonzero. By taking
appropriate products of Ř, this was straightforwardly extended in [20], and �(N) actually has
the general property:

(P1): For any pair i < j of points such that, in the link pattern π , no arch connects any pair of
points among i, i + 1, . . . , j , the component �(N)

π vanishes when zj = 1 + zi .

The first set of relations (2.17) turns out to be sufficient to generate all the entries of �(N)

from say that corresponding to the maximally crossing link pattern, still denoted π0 by a slight
abuse of notation, and that connects points i and i + n, i = 1, 2, . . . , n: indeed, like in [20], we
just have to follow ‘paths’ from π0 to π = fi1fi2 · · · fik · π0 obtained by successive actions of
the generators fi , restricted in such a way that they do not act trivially (i.e. fi never acts on a
link pattern that connects points i and i + 1) and apply (2.17) accordingly. Any two such paths
must be equivalent modulo the braid relations fifi+1fi = fi+1fifi+1, f

2
i = I and fifj = fjfi

for |i − j | > 1. It is easy to show that the � also satisfy the braid relations, just like the
‘gauged’ operators

δi = 2∂i − τi (2.21)

in terms of which �i = (1 + zi − zi+1)δi1/(1 + zi − zi+1). However, as already observed
in [20] in the periodic case, the representation of the symmetric group they form is not
faithful (it has dimension (2n − 1)!!, to be compared with the order of symmetric group,
(2n)! = (2n − 1)!! × 2nn!), and we must also implement the stabilizer relations

�i�i+n�
(N)
π0

= �(N)
π0

(2.22)

for i = 1, 2, . . . , n − 1. So, if �(N)
π0

obeys relations (2.22), the result of the successive actions
of �s yielding �(N)

π out of �(N)
π0

is independent of the path from π0 to π , and all components
of �(N) are therefore determined by equation (2.17) without ambiguity.

Relations (2.22) however do not seem to determine �
(N)
0 ≡ �(N)

π0
completely. The other

set of relations (2.18) actually serves this purpose, as we shall see in the next section. To
conclude this section, let us mention two more intertwining properties, one in the ‘bulk’, and
the other on the boundary. The former will lead to the main recursion relation on entries of
�(N), while the latter will allow us to derive some boundary symmetry property of �(N), both
instrumental in eventually computing the sum on the entries of �(N). Let us denote by ϕi the
embedding of CLP2n−2 → CLP2n that inserts a little arch between points i − 1 and i. We have
the following restriction/projection property: if two neighbouring parameters zi and zi+1 are
such that zi+1 = 1 + zi , then

T (t |z1, . . . , zi, zi+1 = 1 + zi, . . . , z2n)ϕi = ϕiT (t |z1, . . . , zi−1, zi+2, z2n) (2.23)

for i = 1, 2, . . . , N − 1. This is proved for instance in [20] by explicitly commuting
ϕi through the product of two R matrices at points i and i + 1, and noting that when
zi+1 = 1 + zi, Ři,i+1(zi, zi+1) ∝ ei .

Finally, using the boundary operator K1 at the leftmost point, and applying the boundary
Yang–Baxter equation (2.9), we get

K1(−z1)T (t | − z1, z2, . . . , zN) = T (t |z1, z2, . . . , zN)K1(−z1) (2.24)
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or pictorially

−z1−z1

z 1 z 1

−z1

z 1 t

−t
. . .

. . .z 2 z 3 z N−1z N

=
t

−t
. . .

. . .z 2 z 3 z N−1z N
(2.25)

This boundary intertwining relation, when applied on the vector �(N)(−z1, z2, . . . , zN), allows
us to show that the latter is proportional to �(N)(z1, z2, . . . , zN), and we find for even N = 2n:

�(N)(−z1, z2, . . . , zN) = �(N)(z1, z2, . . . , zN). (2.26)

The same reasoning at the other end with the point labelled N leads to the condition

�(N)(z1, z2, . . . , zN−1,−zN) = �(N)(z1, z2, . . . , zN). (2.27)

In both equations, the proportionality factors are fixed to be 1 by the fact that �(N) is a
polynomial.

Let us also mention that the system is invariant under reflection under which the points
are reflected as i → N + 1 − i, and the link patterns π → ρ(π) accordingly. Operatorwise, a
global reflection reverts all orientations of lines, and therefore inverts all operators,
which amounts to switching all zi → −zi . As a result, the reflected eigenvector
�(N)ρ(−zN,−zN−1, . . . ,−z1), with components

(
�(N)ρ

π (−zN,−zN−1, . . . ,−z1)
) = �

(N)

ρ(π)×
(−zN,−zN−1, . . . ,−z1), is proportional to �(N)(z1, z2, . . . , zN), and as �(N) is a polynomial,
we have

�
(N)

ρ(π)(−zN,−zN−1, . . . ,−z1) = �(N)
π (z1, z2, . . . , zN) (2.28)

for all link patterns π ∈ CLPN .
An important conclusive remark is in order. An alternative transfer matrix T ′ for the

inhomogeneous crossing loop model with open boundary conditions may be written uniquely
in terms of ‘bulk’ (Ř) and ‘boundary’ (K) operators, as shown for instance in figure 2. The
commutation of T ′ with T is a consequence of the Yang–Baxter and boundary Yang–Baxter
equations (2.8) and (2.9). This means in turn that the relations on �(N) inherited from the
intertwining properties involving Ř and K (namely equations (2.17)–(2.18) and (2.26)–(2.27))
completely determine �(N) up to a global proportionality factor, as they produce an obvious
(Perron–Frobenius) eigenvector for T ′. The purpose of the next section is to exhibit a candidate
for �

(N)
0 for which all these relations will be satisfied: this in turn will prove, by a uniqueness

argument, that the candidate for �
(N)
0 is indeed the right value, thus solving our problem for

all components of �(N).

2.3. Solution for �
(N)
0

As mentioned in the previous section, relations (2.16) together with the boundary symmetries
(2.26)–(2.27) determine �(N) completely up to a global normalization, which we have fixed
by the coprimarity requirement, provided in addition the component �(N)

π0
= �

(N)
0 satisfies

the stabilizer conditions (2.22). The entry �
(N)
0 must be further determined by relations (2.18)

and (2.26)–(2.27). The former actually reduce to just one of them, as we may obtain any
other relation in the list (2.18) by acting on a particular one with a succession of operators
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. . .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

T

T '

Figure 2. The alternative transfer matrix T ′, together with T. The two commute, as a consequence
of the Yang–Baxter and boundary Yang–Baxter equations.

�i : this simply amounts to generate any other relation by means of crossing/uncrossings of
consecutive arches of the corresponding link patterns, via an action of the fi operators that
never hit little arches connecting i to i + 1. Let us therefore examine only the simplest (and
generic) case of equation (2.18), corresponding to the link pattern π = fn−1fn−2 · · · f1π0,
with a unique little arch, connecting points n and n + 1. In this case, equation (2.18) reads

�n�n−1�n−2 · · · �1�
(N)
0 = (1 + �n)

n−1∑
j=1

�n−1�n−2 · · · �j+1�j−1�j−2 · · · �1�
(N)
0 (2.29)

or pictorially

�n�

nn+1

=
n−1∑
j=1

�

n+1nj j+n

+ �

n+1nj j+n

(2.30)

Noting that 1 + �i = �i × 2/(1 + zi − zi+1), we finally get the relation

�n


�n−1�n−2 · · ·�1 − 2

1 + zn − zn+1

n−1∑
j=1

�n−1�n−2 · · ·�j+1�j−1�j−2 · · ·�1


�

(N)
0 = 0.

(2.31)

Due to simple commutation relations between �s and monomials of the form 1 + zi − zj , this
may be recast into

�n
n = 0 (2.32)

where


n =
(

�n−1 − 2

1 + zn − zn+1

) (
�n−2 − 2

1 + zn−1 − zn+1

)
· · ·

(
�1 − 2

1 + z2 − zn+1

)
�

(N)
0 .

(2.33)
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As �i is proportional to ∂i , equation (2.32) simply expresses that 
n must be invariant under
the interchange of zn and zn+1.

By explicit calculation of �
(N)
0 and 
n from the eigenvector condition (2.12) for the first

few values of N = 2, 4, 6, we have observed a particularly simple formula for 
n, which
displays the desired invariance manifestly, namely,


n = �
(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , z2n)

×
n−1∏
i=1

(ai,nbi,nai,n+1bi,n+1an,n+i+1cn,n+i+1an+1,n+i+1cn+1,n+i+1) (2.34)

where we have defined for convenience

ai,j = 1 + zi − zj , bi,j = 1 − zi − zj , ci,j = 1 + zi + zj . (2.35)

According to previous section, relation (2.34), if true, determines �
(N)
0 completely, and

therefore fixes the whole vector �(N) as well. The validity of (2.34) for general N also
implicitly states that no spurious overall polynomial divisor of the entries of �(N) will occur,
hence does not conflict with the coprimarity requirement of its components. Before using
them, let us first turn relations (2.33) and (2.34) into a recursion relation for �

(N)
0 . This is

readily done upon using the inversion formula(
�j − 2

aj+1,n+1

)−1

=
(

aj,n+1�j

1

aj+1,n+1

)−1

= aj+1,n+1�j

1

aj,n+1
= �j +

2

aj,n+1
(2.36)

where we have used �2
j = I . This allows us to invert equation (2.33) into

�
(N)
0 (z1, . . . , zN) =

(
�1 +

2

a1,n+1

)(
�2 +

2

a2,n+1

)
× · · · ×

(
�n−1 +

2

an−1,n+1

)

×
(

�
(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , zN)

×
n−1∏
i=1

(ai,nbi,nai,n+1bi,n+1an,n+i+1cn,n+i+1an+1,n+i+1cn+1,n+i+1)

)
. (2.37)

We now state our main result: the entry �
(N)
0 of the ground-state vector of the crossing

loop model with open boundaries is given by the recursion relation (2.37), with the initial
condition that �

(2)
0 = 1. To prove this statement, we must

(i) check that �
(N)
0 as given by (2.37) is indeed a polynomial;

(ii) check that �
(N)
0 satisfies property (P1) in order for guaranteeing the polynomiality of all

other entries of �(N), obtained via actions of the �i on �
(N)
0 , and finally

(iii) check that �(N) thus constructed satisfies all relations (2.17)–(2.18), (2.26)–(2.27) and
(2.22).

Actually in the latter step, only (2.26)–(2.27) and (2.22) must be checked, as equation (2.17)
is used to generate the other entries of �(N), and the main recursion relation also guarantees
that equation (2.18) is satisfied.

To check (i), we will rearrange the various factors a, b, c in (2.37), using �i + 2
ai,n+1

=
ai,i+1ai+1,n+1δi × 1/(ai,n+1ai,n+1), with δi as in (2.21), and the fact that, like ∂i and τi , δi

commutes with the functions that are symmetric under the interchange zi ↔ zi+1. Let us
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prove by induction, that for even N = 2n,

�
(N)
0 (z1, . . . , zN) = P

(N)
0 (z1, . . . , zN) ×

∏
1�i<j�n

ai,j bi,j ai+n,j+nci+n,j+n ×
n∏

�=2

n+�−1∏
m=n+1

a�,m,

(2.38)

where P
(N)
0 is a polynomial of the z. If we alternatively define the quantity P

(N)
0 via

equation (2.38), we are simply left with proving that it is a polynomial. We apply the
recursion relation (2.37) to equation (2.38) with N → N − 2, and with the appropriate shifts
of variables zi → zi+2 for i = n, n + 1, . . . , 2n − 2. Commuting all possible a, b, c factors
that are symmetric in zi, zi+1 through the δi , we finally get that equation (2.38) is equivalent
to the relation,

P
(N)
0 (z1, . . . , zN) =

n−1∏
i=1

δiai+1,n+i+1

n−1∏
j=1

bj,n+1cn,n+j+1P
(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , zN),

(2.39)

which proves the desired result, as the operators δi transform polynomials into polynomials
of the same degree: we find that P

(N)
0 (z1, . . . , zN) is a polynomial of the z, with total degree

3n(n − 1)/2.
Moreover, equation (2.38) also allows us to immediately check property (ii), namely that

�
(N)
0 has the expected vanishing properties of (P1) when zj = 1 + zi (simply inspect the

a factors). Note finally that P
(2)
0 (z1, z2) = 1, as is readily seen from the explicit solution

of the eigenvector equation (2.12), and therefore using iteratively (2.39), and commuting all
operators δ as much as possible to the left, we arrive at the closed expression:

PN(z1, . . . , zN) =
(

n−1∏
r=1

n−r∏
i=1

δia2,n+r+i

) 
n−1∏

s=1

n−s∏
j=1

bj,n+scn+1−s,n+s+j


. (2.40)

We are therefore left with the final task of checking that �
(N)
0 , defined via (2.38) and

(2.40), indeed satisfies the stabilizer property (2.22) and the boundary symmetry properties
(2.26)–(2.27), which will in turn be granted for any other component of �(N), via actions with
the �i . Equation (2.22) is proved in its equivalent form �i�

(N)
0 = �i+n�

(N)
0 by induction

on n: assume it is satisfied by �
(N−2)
0 , for n → n − 1. Going back to the original equivalent

formulation of the recursion relation Dn�
(N)
0 = 
n with

Dn = �n−1�n−2 · · · �1 − 2

an,n+1

n−1∑
j=1

�n−1�n−2 · · · �j+1�j−1�j−2 · · · �1 (2.41)

and using the braid relations satisfied by the �, it is easy to show that

�iDn = Dn�i+1 �i+n+1Dn = Dn�i+n+1 (2.42)

for i = 1, 2, . . . , n − 2. Moreover, in this range of indices,

�i
n =
(

n−1∏
i=1

ai,nbi,nai,n+1bi,n+1an,n+i+1cn,n+i+1an+1,n+i+1cn+1,n+i+1

)

×�i�
(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , zN)

=
(

n−1∏
i=1

ai,nbi,nai,n+1bi,n+1an,n+i+1cn,n+i+1an+1,n+i+1cn+1,n+i+1)

)
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×�i+n+1�
(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , zN)

= �i+n+1
n, (2.43)

where we have used the explicit symmetry of the prefactor in zi and zi+1 and the induction
hypothesis. Combining equations (2.42) and (2.43), we immediately get that �i+1�

(N)
0 =

�i+n+1�
(N)
0 , which amounts to equation (2.22) for i = 2, 3, . . . , n−1 as the � are involutions.

The case i = 1 is more tedious, as no nice commutation relations like (2.42) are available.
However the property �1�

(N)
0 = �n+1�

(N)
0 reduces to δ1a2,n+1P

(N)
0 = δn+1a2,n+1P

(N)
0 , which

we now prove by using the explicit expression (2.40).
We will make extensive use of definition (2.21) of δi and of the following modified Leibniz

rule

∂i(fg) = τi(f )∂i(g) + g∂i(f ) = τi(g)∂i(f ) + f ∂i(g) (2.44)

satisfied by the divided difference operator ∂i of equation (2.20) acting on the product of
functions f, g. When translated in terms of δi , upon noting that τi(fg) = τi(f )τi(g), this
gives

δi(fg) = τi(f )δi(g) + 2g∂i(f ). (2.45)

Isolating the first two terms in product (2.40), thus writing P
(N)
0 = δ1a2,n+2R

(N)
0 , we see that

the condition δ1a2,n+1P
(N)
0 = δn+1a2,n+1P

(N)
0 amounts to

δ1a2,n+1δ1a2,n+2R
(N)
0 (z1, . . . , zN) = (a1,n+1δ1 + 2)δ1a2,n+2R

(N)
0 (z1, . . . , zN)

= δn+1a2,n+1δ1a2,n+2R
(N)
0 (z1, . . . , zN)

= (a2,n+2δn+1 + 2)δ1a2,n+2R
(N)
0 (z1, . . . , zN) (2.46)

where we have used relation (2.45) and ∂1(a2,k) = 1 = ∂k(a2,k) for k > 2. Equation (2.46)
amounts to a1,n+1R

(N)
0 = δn+1δ1a2,n+2R

(N)
0 , or equivalently P

(N)
0 = δ1a2,n+2R

(N)
0 =

δn+1a1,n+1R
(N)
0 . To best illustrate the strategy of the proof, let us first treat the case N = 6.

First, it is easy to check directly that

P
(4)
0 (z1, z2, z3, z4) = δ1a2,4b1,3c2,4 = δ3a1,3b1,3c2,4. (2.47)

Then we write

P
(6)
0 = δ1a2,5δ2a3,6δ1a2,6Q Q = b1,4c3,5b2,4c3,6b1,5c2,6 (2.48)

and we have to prove that P
(6)
0 = S

(6)
0 , with

S
(6)
0 = δ4a1,4δ2a3,6δ1a2,6Q = δ2a3,6δ4a1,4δ1a2,6Q. (2.49)

We now wish to commute the operator δ4 all the way to the right. For this, we apply formula
(2.45) to rewrite a1,4δ1 = δ1a2,4 − 2, which yields

S
(6)
0 = (δ2a3,6δ1a2,6δ4a2,4 − 2δ2a3,6δ4a2,6)Q

= (δ2a3,6δ1a2,6δ4a2,4 − 2δ2a3,6a2,6δ4)Q. (2.50)

Now we note that

δ4a2,4Q = b1,4c3,6b1,5c2,6δ4a2,4b2,4c3,5

= b1,4c3,6b1,5c2,6P
(4)
0 (z2, z3, z4, z5)

= b1,4c3,6b1,5c2,6δ2a3,5b2,4c3,5

= δ2a3,5Q (2.51)

where we have used property (2.47) with the substitution (z1, z2, z3, z4) → (z2, z3, z4, z5).
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We now take back the operator δ2 to the left:

S
(6)
0 = (δ2δ1a3,6a2,6δ2a3,5 − 2δ2a3,6a2,6δ4)Q

= (δ2δ1δ2a3,6a2,6a3,5 − 2δ2a3,6a2,6δ4)Q

= (δ1δ2δ1a3,6a2,6a3,5 − 2δ2a3,6a2,6δ4)Q

= (δ1δ2a3,5δ1a3,6a2,6 − 2δ2a3,6a2,6δ4)Q

= (δ1(a2,5δ2 + 2)δ1a3,6a2,6 − 2δ2a3,6a2,6δ4)Q

= (δ1a2,5δ2a3,6δ1a2,6 + 2δ2a3,6a2,6(δ2 − δ4))Q (2.52)

where we have used property (2.45) and the braid relation δ2δ1δ2 = δ1δ2δ1. Finally,
we compute (δ2 − δ4)Q = b1,4c3,6b1,5c2,6(δ2 − δ4)c3,5b2,4 = 0, again as a consequence
of property (2.47) with the substitution (z1, z2, z3, z4) → (z2, z3, z4, z5), which reads
(δ2a3,5 − δ4a2,4)c3,5b2,4 = 0 = a2,5(δ2 − δ4)c3,5b2,4. Subsequently, equation (2.52) reduces
to S

(6)
0 = P

(6)
0 , which completes the proof for N = 6. We now turn to the case of general N.

The proof is by weak induction on N. We assume the property

P
(N−2r)
0 (z1, . . . , zN−2r ) = δ1a2,n−r+2R

(N−2r)
0 (z1, . . . , zN−2r )

= δn−r+1a1,n−r+1R
(N−2r)
0 (z1, . . . , zN−2r ) (2.53)

for all r = 1, 2, . . . , n − 2. We start from the formula for S
(N)
0 = δn+1a1,n+1R

(N)
0 :

S
(N)
0 = δn+1a1,n+1U

(1)
2,n−1U

(2)
1,n−2U

(3)
1,n−3 · · · U(n−2)

1,2 U
(n−1)
1,1 Q

U
(r)
s,t =

t∏
i=s

δiai+1,n+r+i Q =
n−1∏
r=1

n−r∏
i=1

bi,n+rcn+1−r,n+r+i ,
(2.54)

and commute the operator δn+1 all the way to the right. Actually, as δn+1a1,n+1 commutes with
U

(1)
2,n−1, we simply have to commute it through U

(2)
1,n−2, as δn+1 then also commutes with the

rest of the U on its right. We now use repeatedly formula (2.45) to commute δn+1 all the way
to the right:

δn+1a1,n+1U
(2)
1,n−2 = δn+1(δ1a2,n+1 − 2)a2,n+3U

(2)
2,n−2

= (δ1a2,n+3δn+1a2,n+1 − 2a2,n+3δn+1)U
(2)
2,n−2

= U
(2)
1,1δn+1(δ2a3,n+1 − 2)a3,n+4U

(2)
3,n−2 − 2a2,n+3U

(2)
2,n−2δn+1

= U
(2)
1,2δn+1a3,n+1U

(2)
3,n−2 − 2U

(2)
1,1a3,n+4U

(2)
3,n−2δn+1 − 2a2,n+3U

(2)
2,n−2δn+1

= U
(2)
1,n−2δn+1an−1,n+1 − 2

n−2∑
r=1

U
(2)
1,r−1ar+1,n+r+2U

(2)
r+1,n−2δn+1. (2.55)

As the term δn+1an−1,n+1 commutes with all U
(r)
1,n−r for r � 3, we finally get

S
(N)
0 = U

(1)
2,n−1U

(2)
1,n−2 · · ·U(n−1)

1,1 δn+1an−1,n+1Q

− 2
n−2∑
r=1

U
(1)
2,n−1U

(2)
1,r−1ar+1,n+r+2U

(2)
r+1,n−2U

(3)
1,n−3 · · ·U(n−1)

1,1 δn+1Q. (2.56)

We now note that

δn+1an−1,n+1Q = Q

bn−1,n+1cn,n+2
δn+1an−1,n+1bn−1,n+1cn,n+2

= Q

bn−1,n+1cn,n+2
P

(4)
0 (zn−1, zn, zn+1, zn+2)

= Q

bn−1,n+1cn,n+2
δn−1an,n+2bn−1,n+1cn,n+2, (2.57)
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where we have commuted δn+1 through the piece of Q symmetric in zn+1, zn+2 and used property
(2.47) for (z1, z2, z3, z4) → (zn−1, zn, zn+1, zn+2). We must now take the operator δn−1 to the
left. Again, it is readily seen to commute with U

(r)
1,n−r for r = n−1, n−2, . . . , 3. We therefore

concentrate on

U
(1)
2,n−1U

(2)
1,n−2δn−1an,n+2 = U

(1)
2,n−2U

(2)
1,n−3δn−1an,2nδn−2an−1,2nδn−1an,n+2

= U
(1)
2,n−2U

(2)
1,n−3δn−1δn−2δn−1an,2nan−1,2nan,n+2

= U
(1)
2,n−2U

(2)
1,n−3δn−2δn−1an,n+2an,2nδn−2an−1,2n

= U
(1)
2,n−2U

(2)
1,n−3δn−2(an−1,n+2δn−1 + 2)an,2nU

(2)
n−2,n−2

= U
(1)
2,n−2U

(2)
1,n−3δn−2an−1,n+2δn−1an,2nU

(2)
n−2,n−2 + 2U

(1)
2,n−2U

(2)
1,n−3an,2nan−1,2nδ

2
n−1

= U
(1)
2,n−2U

(2)
1,n−3δn−2an−1,n+2U

(1)
n−1,n−1U

(2)
n−2,n−2 + 2U

(1)
2,n−1U

(2)
1,n−3an−1,2nδn−1

= δ1a2,n+2U
(1)
2,n−1U

(2)
1,n−2 + 2

n−2∑
r=1

U
(1)
2,n−1U

(2)
1,n−r−2an−r,2n−r+1δn−rU

(2)
n−r+1,n−2

(2.58)

where we have repeatedly used (2.45) and the braid relations, and also δ2 = 1 to rewrite
an−r+1,2n−r+1an−r,2n−r+1 = δn−ran−r+1,2n−r+1an−r,2n−r+1δn−r . Comparing equation (2.58) on
one hand and (2.55) multiplied on the left by U

(1)
2,n−2 on the other hand, we find

δn+1a1,n+1U
(1)
2,n−2U

(2)
1,n−2 = δ1a2,n+2U

(1)
2,n−1U

(2)
1,n−2

+ 2U
(1)
2,n−1

n−2∑
r=1

U
(2)
1,r−1ar+1,n+r+2(δr+1 − δn+1)U

(2)
r+2,n−2. (2.59)

When multiplied by all the remaining factors U
(3)
1,n−3 · · · U(n−1)

1,1 Q on the right, equation (2.59)
reads

S
(N)
0 = P

(N)
0 + 2U

(1)
2,n−1

n−2∑
r=1

U
(2)
1,r−1ar+1,n+r+2(δr+1 − δn+1)U

(2)
r+2,n−2U

(3)
1,n−3 · · · U(n−1)

1,1 Q. (2.60)

Each term in the sum is now computed by invoking the weak induction hypothesis (2.53) for
the polynomials P

(N−2r)
0 (zr+1, zr+2, . . . , zN), which yields

0 = (δr+1ar+2,n+2 − δn+1ar+1,n+1)R
(N−2r)
0 (zr+1, zr+2, . . . , zN)

= ar+1,n+1(δr+1 − δn+1)R
(N−2r)
0 (zr+1, zr+2, . . . , zN) (2.61)

by use of equation (2.45), and where

R
(N−2r)
0 (zr+1, zr+2, . . . , zN) = U

(2)
r+2,n−2U

(3)
r+1,n−3 · · ·U(n−r−1)

r+1,r+1 Q′ (2.62)

with Q′ = ∏n−r−1
s=1

∏n−r−s
i=1 bi+r,n+scn+1−s,n+s+i . Noting finally that the quantity

U
(2)
r+2,n−2U

(3)
r+1,n−3 · · · U(n−r−1)

r+1,r+1 Q′ is exactly the piece of U
(2)
r+2,n−2U

(3)
1,n−3 · · · U(n−1)

1,1 Q that does
not commute with (δr+1−δn+1), we find that each term in the sum of (2.60) vanishes identically.
We conclude that S

(N)
0 = P

(N)
0 , which completes the proof that �1�

(N)
0 = �n+1�

(N)
0 .

To finally prove equations (2.26) and (2.27), we first note that �
(N)
0

/
P

(N)
0 , expressed

through (2.38), is manifestly even in z1 and z2n, as the quantity a1,j b1,j is invariant under
z1 → −z1, while aj,2ncj,2n is invariant under z2n → −z2n for all j in the range of the
product. Proceeding by induction on N and assuming that P

(N−2)
0 (z1, . . . , zN−2) is even

in z1 and zN−2, we immediately get from equation (2.39) that P
(N)
0 (z1, . . . , z2n−1,−z2n) =
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P
(N)
0 (z1, . . . , z2n−1, z2n), as when z2n → −z2n the quantity an,2ncn,2n, that carries the only

dependence on z2n in the prefactor, remains invariant. To prove the property for z1, we simply
note that (2.26) is a consequence of equation (2.27) and the reflection symmetry (2.28), which
we just have to prove for �

(N)
0 , whose link pattern is reflection-symmetric π0 = ρ(π0). This

is again done by induction on n. Denoting by z̃ = (−z2n,−z2n−1, . . . ,−z2,−z1), we have
the following property:

�if (w)|w→z̃ = �2n−if (z̃) (2.63)

as a direct consequence of the definition of �. Hence performing the substitution z → z̃ in

n results in 
n(z̃) = D̃n�

(N)
0 (z̃), where

D̃n = �n+2�n+3 · · ·�2n−1 − 2

an,n+1

n−1∑
j=1

�n+2�n+3 · · · �n+j�n+j+2�n+j+3 · · ·�2n−1. (2.64)

Letting this operator act on �
(N)
0 (z) rather that on �

(N)
0 (z̃), we may use equation (2.22)

repeatedly to rewrite the result as D̃n�
(N)
0 (z) = Dn�

(N)
0 (z): indeed, first replacing �2n−1 →

�n−1 and commuting it all the way to the left, then repeating this for �2n−2 → �n−2, etc,
until all original � factors are transformed, takes D̃n back to Dn. By the induction hypothesis,
we have 
n(z̃) = 
n(z) as all prefactors of �

(N−2)
0 are manifestly reflection invariant. We

conclude that 
n(z̃) = D̃n�
(N)
0 (z̃) coincides with 
n(z) = Dn�

(N)
0 (z) = D̃n�

(N)
0 (z), hence

�
(N)
0 (z̃) − �

(N)
0 (z) is annihilated by the invertible operator D̃n, therefore vanishes identically,

and we have proved the desired reflection symmetries.
This completes the proof that �(N)

0 is given by equations (2.38) and (2.40). By inspection,
as the � are degree-preserving operators, we deduce immediately that �

(2n)
0 is a polynomial

of total degree 4n(n − 1) while the partial degree in each variable is 4(n − 1). In particular,
in the reduction from size N = 2n to size N − 1 = 2n − 1 mentioned in section 2.1, we have
the following formula:

�(N−1)(z1, . . . , zN−1) = lim
zN →∞

1

z
4(n−1)
N

�(N)(z1, . . . , zN). (2.65)

Recursion (2.39) may be implemented quite efficiently upon using the modified Leibniz
rule (2.44). For n = 2, we have for instance

P
(4)
0 = (2∂1 − τ1)(a2,4b1,3c2,4)

= 2(b1,3c2,4 + a1,4c2,4 + a1,4b2,3) − a1,4b2,3c1,4

= b2,3a1,4b1,4 + 2c2,4(a1,4 + b1,3)

= 5 + 3z2 − 3z3 − 2z2z3 − z2
1 − z2

4 +
(
z2

1 − z2
4

)
(z2 + z3) (2.66)

where we have used definition (2.19), the Leibniz rule (2.44), and the fact that 2 − c1,4 = b1,4.
The explicit value of the whole vector �(4) in terms of the z is given in appendix A, as well
as that of �

(6)
0 . An important remark is in order. The action of the operators 2∂i on the

a, b, c may only produce 2,−2 or 0 as an answer, henceforth starting from equations (2.38)
and (2.39) and using the modified Leibniz formula (2.44) repeatedly ensures by induction
on n that the final result for �

(N)
0 may be written in general as an integer linear combination

of products of a, b, c, the coefficients being only ‘±’ powers of 2, as is the case in the
third line of equation (2.66). This in turn guarantees that �

(N)
0 (0, 0, . . . , 0) is a (positive)

integer in the homogeneous limit, and this property goes over to all other components
of �(N) via � actions. To compute the values of �

(N)
0 (0, 0, . . . , 0) using the recursion

relation (2.39), we only need to know the intermediate steps P
(N−2k)
0 up to terms of degree
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(n − k) + (n − k + 1) + · · · + (n − 1) = kn − k(k + 1)/2. With this restriction, we have found
the values:

1, 5, 129, 17 369, 12 275 137, 45 692 809 149, . . . (2.67)

of �
(N)
0 (0, 0, . . . , 0) for N = 2, 4, 6, 8, 10, 12, . . . (the value 129 for �

(6)
0 (0, 0, . . . , 0) may

be read off equation (A.4) of appendix A).
Remarkably, a recursion relation similar to (2.37) may be derived in the case of a

system with periodic boundary conditions, with even size N = 2n. In that case, the entry
corresponding to the maximally crossing link pattern π0 was shown to read [20]

�
(N)
0,per(z1, . . . , z2n) =

2n∏
i=1

n−1∏
k=1

ai,i+k (2.68)

where the indices are taken modulo N (with the convention that i+N ≡ i, for i = 1, 2, . . . , N).
Using (2.68) it is easy to prove by induction that

�
(N)
0,per(z1, . . . , z2n) =

(
�1 +

2

1 + z1 − zn+1

) (
�2 +

2

1 + z2 − zn+1

)

· · ·
(

�n−1 +
2

1 + zn−1 − zn+1

)

×
(

�(N−2)(z1, . . . , zn−1, zn+2, . . . , z2n)

n−1∏
i=1

ai,nai,n+1an,n+i+1an+1,n+i+1

)
.

(2.69)

Actually, the ‘inverse’ formula analogous to (2.34) was obtained in [20], and was the keypoint
of the proof in that case. So, in a certain sense, the recursion relation (2.37) is a natural
extension of the recursion relation (2.69).

Another important property of �(N) concerns its leading term, that is its piece of degree
4n(n − 1) in the z. We actually have the property:

(P2): The leading terms in �(N)
π read

�(N)
π ∼ (−1)c(π)

∏
1�i<j�N

(
z2
i − z2

j

)
∏

pairs (i<j)
connected in π

(
z2
i − z2

j

) (2.70)

where c(π) denotes the number of arch crossings in π .

To prove (P2), we first show by induction on n that it is satisfied by π = π0. For this,
we use (2.39) and note that at large z, δi ∼ −τi , as the piece 2∂i lowers the degree, and
ai,j ∼ (zi − zj ), ci,j ∼ −bi,j ∼ (zi + zj ). We get

P
(N)
0 ∼ P

(N−2)
0 (z1, . . . , zn−1, zn+2, . . . , zN)

n−1∏
i=1

(z1 − zn+i+1)(zi+1 + zn+1)(zn−1 + zn+i+1)

which, together with P
(2)
0 = 1, gives the leading behaviour

P
(N)
0 (z1, . . . , zN) ∼

n∏
i=2

i+n−1∏
j=n+1

(zi + zj )
∏

1�k���n−1

(
z2
k − z2

�+n+1

)
. (2.72)

Once translated back in terms of �
(N)
0 via (2.38), this yields the desired result (2.70) for

π = π0, with an overall sign (−1)n(n−1)/2 from the b factors, where n(n − 1)/2 = c(π0)

coincides with the number of crossings in π0. For an arbitrary link pattern π , we simply have
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to act with operators �i along a minimal path from π0 to π . As we have �i ∼ τi for large
z, equation (2.71) follows immediately, as each transposition of neighbouring variables yields
an overall minus sign, which parallels the fact that the number of crossings is decreased by 1
by the action of fi on the corresponding link pattern.

To conclude this section, let us stress that we have now given a constructive definition of
�

(N)
0 , leading to a vector �(N) polynomial of total degree 4n(n−1) in the z. For it to match the

other definition in section 2.1, we still have to check that no spurious non-trivial polynomial
factor divides all entries of �(N) (entries are coprime). This will actually be proved in
section 2.6, when computing sum rules on the entries of �(N).

2.4. Recursion relations

We now use the intertwining properties of section 2.2 to derive recursion relations for the
entries of �(N). Given a link pattern π , two situations may occur at a given pair of consecutive
points (i, i + 1):

(i) the pattern π has no arch connecting i to i + 1, in which case property (P1) yields

�(N)
π (z1, . . . , zN)|zi+1=1+zi

= 0; (2.73)

(ii) the pattern π has a little arch joining i to i + 1, in which case

�(N)
π (z1, . . . , zN)|zi+1=1+zi

= �
(N−2)
π ′ (z1, . . . , zi−1, zi+2, . . . , zN)

×
N∏

k=1
k �=i,i+1

(2 + zi + zk)(2 + zi − zk)(1 + zk − zi)(1 − zk − zi) (2.74)

where π ′ is the link pattern π with the little arch i, i + 1 removed (π = ϕiπ
′, π ′ ∈

CLP2n−2).

The latter is readily obtained by applying equation (2.23) to the vector �(N) at zi+1 = 1+zi ,
which shows proportionality between the restricted vector �(N) and the projected one
�(N−2), and the polynomial proportionality factor in-between is fixed by the value of
�n−1�n−2 · · · �1�

(N)
0 extracted from equations (2.31), (2.33) and (2.34).

2.5. Symmetries

In the following section we will derive two sum rules for the components of �(N). Before
going into this let us display some symmetry properties of the sum over two particular sets of
components of �(N). We again concentrate on even N = 2n, unless otherwise specified.

By analogy with the case of periodic boundary conditions of [20], we may consider an
interesting subset of the link patterns, which we call the permutation sector, in which each
link pattern only connects points 1, 2, . . . , n to points among n + 1, n + 2, . . . , 2n. The name
permutation sector is clear, as the connections may be encoded via a permutation σ ∈ Sn,
namely i → n + σ(i) for instance. The simplest example of a link pattern in the permutation
sector is the maximally crossing link pattern π0, which corresponds to the identity permutation.

Let bN denote the indicator vector of the permutation sector, with entries equal to 1 in the
sector, and 0 outside. Then we have the following relations:

bNI = bN, bNfi = bN, bNei = 0 (2.75)

for i �= n, which lead to

bNŘi,i+1(zi, zi+1) =
(
1 − 1

2 (zi − zi+1)
)
(1 + zi − zi+1)(

1 + 1
2 (zi − zi+1)

)
(1 − zi + zi+1)

bN = (1 + ai+1,i )ai,i+1

(1 + ai,i+1)ai+1,i

bN . (2.76)
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Introducing

W(N)(z1, . . . , zN) = bn · �(N)(z1, . . . , zN) (2.77)

the sum over the entries of �(N) in the permutation sector, let us act with bN on both sides of
equation (2.16). This immediately yields the symmetry relation

(1 + ai,i+1)ai+1,iW
(N)(z1, . . . , zi, zi+1, . . . , zN)

= (1 + ai+1,i )ai,i+1W
(N)(z1, . . . , zi+1, zi, . . . , zN) (2.78)

valid for i �= n. More generally, replacing equation (2.16) with the action of a suitable
chain-product of Ř allows us to express �(N) as a product of consecutive Ř acting on �(N)

with zi and zj interchanged, for any pair of points i, j . This translates immediately into the
generalized relation

(1 + ai,j )aj,iW
(N)(. . . , zi, . . . , zj , . . .) = (1 + aj,i)ai,jW

(N)(. . . , zj , . . . , zi, . . .) (2.79)

valid only if both i, j � n or both i, j > n. Using the boundary reflection symmetry (2.26),
we also deduce that

W(N)(−z1, z2, . . . , zN) = W(N)(z1, z2, . . . , zN) = W(N)(z1, z2, . . . ,−zN). (2.80)

The same reasoning applies to the sum over all entries of �(N). Let vN denote the vector
with all entries equal to 1, then it satisfies

vNI = vN, vNfi = vN, vNei = vN, vNŘi,i+1(zi, zi+1) = vN . (2.81)

Then the sum over all components of �(N),

Z(N)(z1, . . . , zN) = vN · �(N)(z1, . . . , zN), (2.82)

is symmetric in the z, as follows immediately from acting on both sides of equation (2.16) with
vN . Z(N) also satisfies the above-mentioned boundary reflection symmetries under z1 → −z1

and zN → −zN .

2.6. Sum rules

2.6.1. Sum rule in the permutation sector. We have, for even N = 2n or odd N = 2n − 1,

W(N)(z1, . . . , zN) =
∏

1�i<j�n

ai,j bi,j (1 + ci,j )(1 + aj,i)
∏

n+1�i<j�N

ai,j ci,j (1 + bi,j )(1 + aj,i).

(2.83)

The odd case is as a direct consequence of the even one, by application of equation (2.65).
To prove this for N = 2n, let us use the symmetry relation (2.79): the rhs of

equation (2.79) vanishes if zj = 1 + zi and also if zj = zi − 2, hence W(N)(z1, . . . , zN)

must factor out a term
∏

1�i<j�n ai,j (1 + aj,i)ai+n,j+n(1 + aj+n,i+n). Note that the factors
ai,j here correspond to the simultaneous vanishings of all the components of �(N) in the
permutation sector, according to property (P1), as the only possible occurrence of a little arch
connecting two consecutive points in a link pattern of the permutation sector is between points
n and n + 1. Writing W(N) as

W(N)(z1, . . . , zN) = X(N)(z1, . . . , zN)
∏

1�i<j�n

ai,j (1 + aj,i)ai+n,j+n(1 + aj+n,i+n) (2.84)

for some polynomial X(N), we deduce from equation (2.79) that X(N) is symmetric
separately in z1, z2, . . . , zn and in zn+1, zn+2, . . . , z2n. Moreover, equation (2.80) implies
that W(N)(−z1, . . . , zN) = W(N)(z1, . . . , zN) has extra factors of

∏n
j=2 b1,j (1 + c1,j ), and
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similarly W(N)(z1, . . . ,−zN) = W(N)(z1, . . . , zN) has extra factors of
∏2n−1

i=n+1 cj,2n(1 +bj,2n).
These two quantities must therefore divide X(N), but by the above-mentioned symmetries of
X(N), it must also be a multiple of

∏
1�i<j�n bi,j (1 + ci,j ) and of

∏
n+1�i<j�2n ci,j (1 + bi,j ).

This exhausts all factors in equation (2.83). We have finally found a total of 4n(n − 1) factors
for W(N), which is therefore entirely fixed to be given by (2.83) up to a constant, as it is a
polynomial of degree 4n(n − 1). The constant is now further fixed to be 1 by the leading term
of W(N). Indeed, using property (P2) and equation (2.70), we may write the leading term in
W(N) as

W(N) ∼ �
(
z2

1, . . . , z
2
2n

) ∑
σ∈Sn

sgn(σ )∏n
i=1

(
z2
i − z2

n+σ(i)

)
= �

(
z2

1, . . . , z
2
2n

)
det

(
1(

z2
i − z2

n+i

)
)

1�i,j�n

= �
(
z2

1, . . . , z
2
2n

)�
(
z2

1, . . . , z
2
n

)
�

(
z2
n+1, . . . , z

2
2n

)
∏n

i,j=1 z2
i − z2

j+n

= �
(
z2

1, . . . , z
2
n

)2
�

(
z2
n+1, . . . , z

2
2n

)2
(2.85)

where we have used the shorthand notation �(m1, . . . , mp) for the Vandermonde determinant∏
1�i<j�p(mi −mj), applied the parametrization of link patterns in the permutation sector by

the permutations σ ∈ Sn, interpreted (−1) to the number of crossings as the signature of the
permutation, and finally applied the Cauchy determinant formula to re-express the resulting
determinant as a product. The leading behaviour of the rhs of equation (2.83) is readily
checked to coincide with this product.

As a side result of the sum rule (2.83), we conclude that the vector �(N) constructed in
section 2.3 indeed satisfies the coprimarity constraint on its components, as its degree must
be at least 4n(n − 1) from the necessary factors of its sum rule within the permutation sector,
leaving no place for overall spurious polynomial factors.

Note finally that in the homogeneous limit where all z → 0, we simply get the integers

W(2n)(0, 0, . . . , 0) = 22n(n−1) W (2n−1)(0, 0, . . . , 0) = 22(n−1)2
(2.86)

as the sum of the integer entries of �(N)(0, . . . , 0) in the permutation sector.

2.6.2. Sum rule for all components of �(N). We have for even N = 2n:

Z(N)(z1, . . . , zN) =
∏

1�i<j�N

1 − (zi − zj )
2

zi − zj

1 − (zi + zj )
2

zi + zj

× Pf

(
zi − zj

1 − (zi − zj )2

zi + zj

1 − (zi + zj )2

)
1�i<j�N

(2.87)

while for odd N = 2n − 1, we have

Z(N−1)(z1, . . . , zN−1) = lim
zN →∞

1

z
4(n−1)
N

Z(N)(z1, . . . , zN). (2.88)

The latter relation is a consequence of equation (2.65).
Relation (2.87) is proved by induction on n. As mentioned in section 2.5, Z(N) is

a symmetric polynomial of the z, and by a similar reasoning as above, we also conclude
that Z(N)(z1, . . . , zi−1,−zi, zi+1, . . . , zN) = Z(N)(z1, . . . , zi−1, zi, zi+1, . . . , zN), for all
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i = 1, 2, . . . , N . Moreover, from properties (i)–(ii) of section 2.4, and upon summing
over the entries of �(N), we see that Z(N) satisfies for instance the recursion relation

Z(N)(z1 = z2 − 1, z2, z3, . . . , zN) = Z(N−2)(z3, z4, . . . , zN)

×
N∏

k=3

(1 + z2 + zk)(1 + z2 − zk)(2 + zk − z2)(2 − zk − z2). (2.89)

By the above symmetries, this fixes the value of Z(N) for z1 = ±(±zk − 1), k = 2, 3, . . . , N ,
hence a total of 4(n − 1) values, which fixes Z(N) as a function of z1 up to a proportionality
constant, as Z(N) is a polynomial of degree 4(n−1) of z1. The latter is further fixed by writing
the leading behaviour for large z of Z(N):

Z(N) ∼ �
(
z2

1, . . . , z
2
2n

) ∑
π∈CLP2n

(−1)c(π)∏
pairs (i<j)

connected by π

(
z2
i − z2

j

)

= �
(
z2

1, . . . , z
2
2n

)
Pf

(
1(

z2
i − z2

j

)
)

1�i<j�2n

(2.90)

where we have directly identified the Pfaffian, upon interpreting the π as permutations of S2n

with only cycles of length 2, and (−1)c(π) as the signature of the corresponding permutation.
The rhs of (2.87) is clearly a polynomial of the z, symmetric under interchange and sign
reversal of the z, of total degree 4n(n − 1) and partial degree 4(n − 1) in each variable.
Moreover, it clearly satisfies the recursion relation (2.89), as when z1 → z2 − 1 the first
two lines and columns of the matrix Ai,j = (

z2
i − z2

j

)/
((1 − (zi − zj )

2)(1 − (zi + zj )
2) are

dominated by the terms A1,2 = −A2,1, henceforth the determinant of A factors into that of A

with the first two rows and columns deleted, and the proportionality factor coming from the
prefactor in (2.87) matches that in (2.89). Moreover, for large z, the Pfaffian reduces to

∏
1�i<j�N

(
z2
i − z2

j

)
Pf

(
1

z2
i − z2

j

)
1�i<j�N

(2.91)

and matches exactly the sum over the leading terms of the components of �(N), as given by
equation (2.90). This completes the proof of the sum rule (2.87).

Note finally that in the homogeneous limit where all z → 0, formula (2.87) reduces to

Z(2n)(0, 0, . . . , 0) = Pf

(
1

2

((
2i + 2j + 1

2j

)
−

(
2i + 2j + 1

2i

)))
0�i<j�2n−1

(2.92)

while in the odd N = 2n − 1 case, we have

Z(2n−1)(0, 0, . . . , 0) = Pf

(
1

2

((
2i + 2j + 1

2j

)
−

(
2i + 2j + 1

2i

)))
1�i<j�2n−2

. (2.93)

The numbers Z(N)(0, . . . , 0) read

1, 7, 39, 1771, 57 163, 16 457 953, 3125 503 009, 5643 044 005 273,

6357 601 085 989 209, . . . (2.94)

for N = 2, 3, 4, . . . , 10, . . . .

3. The inhomogeneous O(1) loop model with open boundaries

We now turn to the open boundary version of the inhomogeneous O(1) (non-crossing) loop
model considered in [1–15]. Throughout this section and appendix B, we use the same
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notations for transfer matrices, ground-state vectors, fundamental link patterns, etc as in the
Brauer case, as there is no ambiguity that from now on we change the subject and deal with
a different case. This allows for avoiding many repetitions, as many of the equations of the
Brauer case still hold in the non-crossing one.

3.1. Transfer matrix and basic relations

Like in the Brauer case, the model of non-crossing loops was originally defined on a square
lattice wrapped on a semi-infinite cylinder of even perimeter, giving rise to periodic boundary
conditions. We now consider the same model on a square lattice that covers a semi-infinite
strip of width N (even or odd), with centres of the lower edges labelled 1, 2, . . . , N . We attach
probabilities (ti , 1 − ti) to the two face loop configurations

and (3.1)

in the column above the edge labelled i. We moreover supplement the picture with the same
patterns of fixed configurations of loops on the (left and right) boundaries as for the Brauer
case, as depicted in equation (2.2). A given configuration now forms a planar pairing of the N
labelled points (one of which is connected to infinity if N is odd), via n = [N/2] non-crossing
arches. The set of such link patterns is denoted by LPN , and has cardinality cn = (2n

n

)/
(n + 1)

the nth Catalan number, for N = 2n or N = 2n − 1. As before, we also consider the
cn-dimensional complex vector space with canonical basis indexed by elements of LPN .

The transfer matrix for this system is built out of the basic R-matrix that acts on open link
patterns or tensor products thereof via

Ri,j (z, w) =
z

w = t (z, w) + (1 − t (z, w)) (3.2)

where as before z and w are the spectral parameters attached to the points labelled i
and j , respectively, and we use the same pictorial representation for the matrix elements
of R (intersection between two oriented lines carrying the spectral parameters z and w).
Alternatively, we have the permuted matrices

Ři,i+1(z, w) = t (z, w) + +(1 − t (z, w))

= t (z, w)I ⊗ I + (1 − t (z, w))ei (3.3)

for i = 1, 2, . . . , N −1 acting on the vector space of link patterns, where ei, i = 1, . . . , N −1
are now the generators of the Temperley–Lieb algebra T LN(1), subject to the relations

e2
i = ei, [ei, ej ] = 0 if |i − j | > 1, eiei±1ei = ei . (3.4)

While I ⊗ I leaves link patterns invariant, ei glues the ends labelled i and i + 1 of the links
and adds up a new link connecting points i and i + 1. If a loop is formed in the process, it must
simply be erased (loops are given a weight 1 here, leading to the relation e2

i = ei). Again, we
use the integrable R-matrix, now corresponding to the choice

t (z, w) = qz − w

qw − z
q = e2iπ/3. (3.5)

Following again Sklyanin [23], we also introduce a boundary operator Ki(z), whose action
is diagonal at the points labelled i = 1 or N, but whose effect is now to inverse the spectral
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parameter z → 1/z attached to that point, represented pictorially like in the Brauer case
(2.7) (except that −z is now replaced by 1/z). We still have the standard Yang–Baxter and
unitarity relations (with multiplicative spectral parameters) that read pictorially as in (2.8), the
boundary Yang–Baxter relation (2.9) (with −z and −w replaced by 1/z and 1/w respectively),
and unitarity boundary relations at the leftmost and rightmost points:

K1(z)K1

(
1

z

)
= I and KN(z)KN

(
1

z

)
= I. (3.6)

The transfer matrix T (t |z1, z2, . . . , zN) of our model reads pictorially exactly the same
as in the Brauer case (2.11), only the intersection between two oriented lines carrying spectral
parameters now correspond to definition (3.2). It now acts on the vector space of (non-
crossing) link patterns with N points. As a consequence of the Yang–Baxter and boundary
Yang–Baxter equations, the transfer matrices at two distinct values of t commute.

As before we denote by �(N)(z1, z2, . . . , zN) the common ground-state vector of the T for
fixed values of the zi , satisfying (2.12). As T is a rational fraction of the zi , we normalize �N so
that all its entries are coprime polynomials of the zi . We may view the entries of �(N) as relative
probabilities of link pattern connections in random loop configurations with inhomogeneous
probabilities (ti , 1 − ti) in the ith column of the strip, and with ti = (qzi − t)/(qt − zi). This
interpretation is again stricto sensu only valid in the range of zi leading to ti ∈ [0, 1], in which
case �(N) is the Perron–Frobenius eigenvector of T.

The remainder of this note is based on an empirical observation, which we conjecture to
be true, that for even N = 2n,�(N) defined above is a polynomial of total degree 3n(n − 1)

and partial degree 2(n − 1) in each variable. A similar property was proved in a rather
indirect way in [15], involving the details of the Bethe ansatz solution of the corresponding
integrable model. In the present case, we believe such a proof should be within reach, although
technically tedious, but we will content ourselves with assuming the result. This property was
the main difference between the strategies of proof in the crossing and non-crossing periodic
boundary loop models of [20, 15], the former appearing as more straightforward, as it does
not require any bound on the degree of the ground-state vector.

An illustration is given in appendix B, where the entries of �(N) are listed for the case
N = 4.

3.2. Intertwining properties

The intertwining relation (2.14) as well as its consequence (2.16) still hold in the non-crossing
case, with the appropriate definition (3.2) of the R-matrix. When expressed in components,
this translates into

�i�
(N)
π =

∑
π ′ �=π

eiπ
′=π

�
(N)
π ′ (3.7)

where, for i = 1, 2, . . . , N − 1, the operator �i acts on functions f ≡ f (z1, z2, . . . , zN) as

�if = qzi − zi+1

1 + q
∂if (3.8)

for i = 1, 2, . . . , N −1, and with ∂i acting as in (2.20). A first consequence of equation (2.16)
is that the entries �(N)

π satisfy a suitably modified property.

(P3): If zj = qzi , and if the link pattern π has no little arch connecting any pair of consecutive
points between i and j , then �(N)

π vanishes.

If j = i + 1, this is easily deduced from relation (2.16), by noting that Ři,i+1(zi, qzi) ∝ ei .
It is easily generalized to more distant points i < j by considering suitable products of R
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e2 e4 e6

e3

Figure 3. A non-crossing link pattern (left) and its associated Dyck path (right). The box
decomposition of the path is indicated, as well as the corresponding actions of ei on the fundamental
link pattern made of consecutive arches connecting points 2i − 1 and 2i.

matrices (see [15] for a detailed proof in the periodic boundary case; the adaptation to the
open boundary case is straightforward).

For even N = 2n, these equations allow us to determine all the entries of �(N) in terms
of that corresponding to the link pattern π0 with maximally nested arches that connects points
i and 2n + 1 − i. Indeed, we may decompose any link pattern canonically into successive
actions of ei on the ‘lowest’ one, made of n little arches connecting points 2i − 1 to 2i. This
is best seen in the Dyck path formulation of link patterns, which are represented as paths on a
square lattice as shown in figure 3. The path of a given link pattern is defined as follows. We
visit the connected points say from left to right, and parallelly draw a path with the rule that
if we encounter a new arch, the path goes up one step, and if we encounter an arch already
opened earlier, the path goes down one step. The area below the path is then decomposed
into square ‘boxes’, each of which corresponds to an action with an operator ei , whose index
is the horizontal coordinate of the box, while the vertical coordinate orders the successive
actions. For instance, the decomposition of figure 3 corresponds to acting with e3e2e4e6 on
the fundamental link pattern made of five successive little arches. With this formulation, it is
easy to write down explicitly the antecedents π ′ �= π of a given link pattern π under the action
of ei . For these to exist, the Dyck path for π must necessarily have a maximum at horizontal
position i. One obvious antecedent π ′′ is obtained by removing the box with this maximum.
Others more subtle may arise from adding a whole row of boxes. The important property here
is that we may order antecedents by strict inclusion. Indeed, the antecedent with the smallest
number of boxes is π ′′, and is strictly contained in all others. We may therefore express each
new component in a triangular way with respect to strict inclusion. As an example let us treat
the case N = 6, with five link patterns, explicitly. We label 1, 2, 3, 4, 5 the link patterns and
their corresponding Dyck paths

1 2 3 4 5

(3.9)

Relations (3.7) allow us to express successively

�2 = �3�1 �3 = �4�2 − �1 �4 = �2�2 − �1 �5 = �2�3 = �4�4

(3.10)
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and we moreover have to write that

�5�2 = �2 �1�4 = �2 �1�5 = �1 + �3

�3�5 = �3 + �4 �5�5 = �1 + �4.
(3.11)

The compatibility between these equations implies a number of relations to be satisfied by
�(6)

π0
≡ �1. This construction also applies to the periodic case, upon cutting the link patterns

between points N and 1 and opening them. Note finally that �i are degree-preserving operators,
hence the total and partial degrees of �(N)

π0
are shared by all other entries of �(N).

Let us finally mention the non-crossing loop model counterparts of equations (2.23)
and (2.24). We still denote by ϕi the embedding of LP2n−2 → LP2n that acts on a link
pattern with n − 1 arches by inserting a little arch between points i − 1 and i. We have the
following restriction/projection property: if two neighbouring parameters zi and zi+1 are such
that zi+1 = qzi , then

T (t |z1, . . . , zi, zi+1 = qzi, . . . , z2n)ϕi = ϕiT (t |z1, . . . , zi−1, zi+2, z2n). (3.12)

As in the Brauer case, this was proved in [15] by explicitly commuting ϕi through the product
of two R matrices at lines i and i + 1, and noting that Ři,i+1(zi, qzi) ∝ ei .

Similarly, equation (2.24) immediately translates into

T (t |z1, z2, . . . , zN)K1

(
1

z1

)
= K1

(
1

z1

)
T

(
t

∣∣∣∣ 1

z1
, z2, . . . , zN

)
(3.13)

with the same pictorial interpretation (2.25) with −z1 replaced by 1/z1.
Finally, the reflection invariance of the system leads to the relation

(z1z2 . . . zN)2(n−1)�(N)ρ

(
1

zN

,
1

zN−1
, . . . ,

1

z1

)
= �(N)(z1, z2, . . . , zN) (3.14)

also obtained by implementing the condition that �(N) has partial degree 2(n − 1) in each
variable zi , and by using the reflection ρ of non-crossing link patterns.

3.3. Solution for �(N)
π0

In the case of even N = 2n, applying condition (i) to the maximally nested pattern π0,
with arches connecting points i and 2n − i, we find that �(2n)

π0
≡ �

(2n)
0 must factor out the

polynomial
∏

1�i<j�n(qzi −zj )
∏

n+1�i<j�2n(q
2zj −zi). Moreover, the symmetry conditions

(2.26)–(2.27) imply more vanishing conditions, and henceforth some extra polynomial factor∏
2�j�n(q

2z1zj − 1)(qzn+j−1zN − 1). This exhausts the partial degree 2(n − 1) both in z1

and zN of �
(N)
0 , hence we may write for instance

�
(N)
0 (z1, z2, . . . , zN) =

n∏
j=2

(qz1 − zj )(q
2z1zj − 1)

× (q2zN − zn+j−1)(qzn+j−1zN − 1)A(N)(z2, . . . , zN−1). (3.15)

Now let us take z1 → 0. The R-matrix elements involving z1 in the transfer matrix T reduce
respectively to −q2I ⊗ I − qe1 and −qI ⊗ I − q2e1, whose product is I ⊗ I . The net result
of taking z1 → 0 is therefore to split T into the identity acting at the point labelled 1 and a
similar transfer matrix acting on the points labelled 2, 3, . . . , N . Taking then zN → 0 now
reduces the transfer matrix to that of size N − 2, acting on the points labelled 2, 3, . . . , N − 1.
As a result, A(N) is proportional to the maximally nested entry of the ground-state vector at
size N − 2, �

(N−2)
0 (z2, . . . , zN−1), and has the same partial and total degrees. We may now
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apply condition (i) again, leading to more factors for �
(N)
0 . Iterating this process, we exhaust

all factors and finally reach the total degree 3n(n − 1), with, for even N = 2n:

�
(2n)
0 (z1, z2, . . . , z2n) =

∏
1�i<j�n

(qzi − zj )(q
2 − zizj )

∏
n+1�i<j�2n

(q2zj − zi)(q − zizj ).

(3.16)

As explained before, this determines in turn all components of �(N) to be polynomials of the
same total and partial degrees.

As a by-product of the above discussion, the case of odd size = 2n − 1 is easily obtained
from the case N = 2n by simply taking zN → 0. We then have that

�(N−1)(z1, z2, . . . , zN−1) = lim
zN →0

�(N)(z1, z2, . . . , zN). (3.17)

Moreover, going from odd to even size gives

�(N−2)(z1, z2, . . . , zN−2) = lim
zN−1→0

�(N−1)(z1, z2, . . . , zN−1)

z1z2 · · · zN−2
. (3.18)

3.4. Recursion relations

As a consequence of the above intertwining properties, given a link pattern π ∈ LP2n, two
situations may occur for a pair (i, i + 1) of consecutive points:

(i) the pattern π has no arch joining i to i + 1, in which case property (P1) implies that

�(N)
π (z1, . . . , zN)|zi+1=qzi

= 0; (3.19)

(ii) the pattern π has a little arch joining i to i + 1, in which case

�(N)
π (z1, . . . , zN)|zi+1=qzi

= �
(N−2)
π ′ (z1, . . . , zi−1, zi+2, . . . , zN)

×
N∏

k=1
k �=i,i+1

(q2zi − zk)(q
2zizk − 1) (3.20)

where π ′ is the link pattern π with the little arch i, i+1 removed (π = ϕiπ
′, π ′ ∈ LP2n−2).

This is readily obtained by applying equation (3.12) to the vector �(N) at zi+1 = qzi .
As a result, the restricted �(N) must be proportional to the projected �(N−2), and the
proportionality factor is fixed by the value of �

(N)
0 (3.16).

3.5. Symmetries

As before, the intertwining properties of previous section lead straightforwardly to symmetry
properties for �(N). Indeed, applying relation (3.12) on the vector �(N)

(
1
z1

, z2, . . . , zN

)
, we

find that the latter must be proportional to �(N)(z1, z2, . . . , zN), with the result

z
4(n−1)
1 �(N)

(
1

z1
, z2, . . . , zN

)
= �(N)(z1, z2, . . . , zN). (3.21)

The same reasoning at the other end with the space labelled N leads to the condition

z
4(n−1)
N �(N)

(
z1, z2, . . . , zN−1,

1

zN

)
= �(N)(z1, z2, . . . , zN). (3.22)

In both equations, we have used the assumed fact that �(N) has partial degree 2(n− 1) in each
variable zi .
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As before, let us consider the sum over all components of �(N), namely

Z(N)(z1, . . . , zN) =
∑

π∈LPN

�(N)
π (z1, z2, . . . , zN) = vN · �(N) (3.23)

where vN is the vector with all entries equal to 1. This vector also satisfies

vNei = vN and vNŘi,i+1(zi, zi+1) = vN (3.24)

hence applying vN to equation (2.16), we immediately get that τiZ
(N) = Z(N), i =

1, 2, . . . , N−1, henceforth Z is symmetric in the zi . Moreover, applying vN to equation (3.21),
we get

z
4(n−1)
1 Z(N)

(
1

z1
, z2, . . . , zN

)
= Z(N)(z1, z2, . . . , zN) (3.25)

hence Z(N) is symmetric and reciprocal in each of the z.

3.6. Sum rule

For even N = 2n, we have

Z(N)(z1, . . . , z2n) =
∏n

i,j=1

(
z2
i + zizj+n + z2

j+n

)(
1 + zizj+n + z2

i z
2
j+n

)
∏

1�i<j�n(zi − zj )(1 − zizj )(zi+n − zj+n)(1 − zi+nzj+n)

× det

(
1

z2
i + zizj+n + z2

j+n

1

1 + zizj+n + z2
i z

2
j+n

)
1�i,j�n

. (3.26)

Remarkably, this coincides with the partition function ZUASM(z1, . . . , zn; zn+1, . . . , z2n)

introduced in [22]. The proof of equation (3.26) parallels exactly that of equation (2.87),
proceeding by induction on n, and makes use of the recursion relations (3.20), as well as of
the symmetries of Z(N).

We also have

Z(N)(z1, . . . , z2n)
2 =

∏
1�i<j�2n

z2
i + zizj + z2

j

zi − zj

1 + zizj + z2
i z

2
j

1 − zizj

× Pf

(
zi − zj

z2
i + zizj + z2

j

1 − zizj

1 + zizj + z2
i z

2
j

)
1�i,j�N

(3.27)

also proved by induction on n. The latter expression has the advantage of being explicitly
symmetric in the z.

In the homogeneous limit where all zi tend to 1, we find that for N = 2n, Z(2n)(1, 1, . . . , 1)

is 3n(n−1) times the total number of U-symmetric ASMs of size (2n) × (2n) discussed in [22],
itself identical to that of vertically symmetric ASMs of size (2n + 1) × (2n + 1).

4. Conclusions

In this paper, we have derived sum rules for the ground-state vector of the inhomogeneous
crossing and non-crossing O(1) loop models on a semi-infinite strip. As opposed to the crossing
case where the result is rigorous and proved completely, we have made in the non-crossing case
a reasonable but crucial assumption on the degree of the ground-state vector as a polynomial
of the inhomogeneities zi . The completion of the latter proof would presumably involve
invoking the algebraic Bethe ansatz solution of the XXZ spin chain with open boundaries, in



Inhomogeneous loop models with open boundaries 6117

much the same spirit as in [15]. We have rather chosen here to concentrate on the various
properties of this ground-state vector, for which we gave an explicit step-by-step construction
by acting on a fundamental component with local divided difference operators, in order to
generate all other entries of the vector. In this respect, it might be possible to unify both
crossing and non-crossing cases by deriving a proof uniquely based on the main relations
induced by equation (2.16), and that only involve the interplay between the symmetric group
action on spectral parameters and the R-matrix of the integrable system. In order to do this,
and by analogy with the crossing case, one should be able to check that the solution of the
non-crossing case (3.16) actually satisfies all constraints inherited from the compatibility of all
equations (3.7), as well as the boundary reflection properties (3.21)–(3.22). By a uniqueness
argument, this would by-pass our approach, which assumes the value of the degree of �(N).
This is a problem for future work. Note finally that such a construction, both in the crossing
and non-crossing cases, should be instrumental in trying to prove variants of the so-called
Razumov–Stroganov conjectures [3]. It would also be interesting to extend the present work
to other types of open boundary conditions, such as those considered in [24], and conjectured
in the non-crossing case to be related to other symmetry classes of alternating sign matrices.

Our approach allows us, in particular, to compute the entries of the ground-state vector
in the homogeneous limit, where it may be identified with the ground-state vector of the
Hamiltonian of a suitable quantum chain, expressed as a particular weighted sum of generators
of the Brauer (resp. Temperley–Lieb) algebra for the crossing (resp. non-crossing) case, acting
on crossing (resp. non-crossing) link patterns (see [18, 3] for explicit expressions). As an
outcome of our calculation, we show that these entries may be picked to be non-negative
integers, summing to specific numbers as given by (2.92) and (2.93) for strips of even/odd
size in the crossing case, and to the total number of vertically symmetric alternating sign
matrices AV (2n + 1) of [22] for strips of even size N = 2n. It is important to note that, as
opposed to the standard case where the entries of the homogeneous ground-state vector are
normalized so that the smallest one is 1 after division by their GCD (cf [15, 20]), the smallest
entries in the open crossing case are not 1, but form themselves a quite intriguing sequence
(2.67), as derived from the homogeneous limit of relation (2.40).

While the numbers AV (2n + 1) have been given extensive combinatorial interpretations,
that of numbers (2.92) and (2.93) is still elusive. Such an interpretation was suggested in
[18] for the cylinder case, by noting and conjecturing that some entries of the homogeneous
ground-state vector of the crossing loop model with periodic boundaries actually matched
degrees of varieties related to the commuting variety [19]. This was further proved in [20]
and extended in [21], where all the components of the ground-state vector were interpreted
as the multidegrees of the components of a matrix variety. It is natural to hope that numbers
(2.92) and (2.93) actually count the total degrees of some matrix varieties, still to be found.
In this respect, the partial sum rule W(N) in the permutation sector (2.83) leading to the
numbers (2.86) seems to indicate, like in the periodic case, that the corresponding components
of the (yet unknown) matrix variety form a complete intersection, whose multidegree has
the factorized form (2.83). We could also hope that the total multidegree, as given by
equation (2.87), may alternatively be obtained like in [21] as the result of a ‘volume’ matrix
integral over the putative matrix variety.

Acknowledgments

We acknowledge many interesting and stimulating discussions with P Zinn-Justin and
J-B Zuber. This research was partly supported by the European network ENIGMA, grant
MRTN-CT-2004-5652 and of the GEOCOMP project (ACI ‘Masse de données’).



6118 P Di Francesco

Appendix A. Entries of the ground-state vector in the dense O(1) crossing loop model
with open boundaries

In this appendix, we give the entries of �(N) and their sum Z(N)(z1, z2, z3, z4) in the Brauer
loop case for N = 4, as well as the entry �(N)

π0
for N = 6. In the notations of section 2.3, and

for N = 4, the three components of �(4) read

�(4) = a1,2b1,2a2,3b3,4c3,4
(
5 + 3z2 − 3z3 − 2z2z3 − z2

1 − z2
4 +

(
z2

1 − z2
4

)
(z2 + z3)

)
�(4) = a1,2b1,2a3,4c3,4

(
11 − 3z2

1 + 8z2 + z2
2 − 8z3 + 2z2

1z3 − 8z2z3 − 2z2
2z3

+ z2
3 + 2z2z

2
3 − 3z2

4 − 2z2z
2
4 − (

z2
1 − z2

3

)(
z2

2 − z2
4

))
�(4) = a2,3

(
23 − 10z2

1 + 3z4
1 − 7z2 + 18z2

1z2 − 3z4
1z2 − 11z2

2 + 4z2
1z

2
2 − z4

1z
2
2 + 3z3

2

− 4z2
1z

3
2 + 7z3 + 10z2

1z3 − z4
1z3 + 2z2z3 + 16z2

1z2z3 − 2z4
1z2z3 − z2

2z3

− 4z2
1z

2
2z3 − 4z3

2z3 − 11z2
3 + 9z2

1z
2
3 − 2z4

1z
2
3 + z2z

2
3 + z2

1z2z
2
3 + 3z2

2z
2
3

+ z2
1z

2
2z

2
3 − z3

2z
2
3 − 3z3

3 − z2
1z

3
3 − 4z2z

3
3 − 2z2

1z2z
3
3 + z2

2z
3
3 + 2z3

2z
3
3

− 10z2
4 − 11z2

1z
2
4 + z4

1z
2
4 − 10z2z

2
4 + z2

1z2z
2
4 + 9z2

2z
2
4 + z2

1z
2
2z

2
4 + z3

2z
2
4

− 18z3z
2
4 − z2

1z3z
2
4 + 16z2z3z

2
4 + 6z2

1z2z3z
2
4 − z2

2z3z
2
4 − 2z3

2z3z
2
4 + 4z2

3z
2
4

+ z2
1z

2
3z

2
4 + 4z2z

2
3z

2
4 + z2

2z
2
3z

2
4 + 4z3

3z
2
4 + 3z4

4 + z2
1z

4
4 + z2z

4
4 − 2z2

2z
4
4 + 3z3z

4
4

− 2z2z3z
4
4 − z2

3z
4
4 + (z2 + z3)

(
z2

1 − z2
3

)(
z2

1 − z2
4

)(
z2

2 − z2
4

))
. (A.1)

These may be obtained by explicitly solving the eigenvector equation (2.12). Alternatively,
we have computed �

(4)
0 in the text using (2.38)–(2.66), with the result �

(4)
0 =

a1,2b1,2a2,3b3,4c3,4P
(4)
0 . The other components read simply

�(4) = �1�
(4)

�(4) = �2�
(4) .

(A.2)

The components (A.1) sum to

Z(4)(z1, z2, z3, z4) = 39 − 30z2
1 + 7z4

1 − 30z2
2 + 14z2

1z
2
2 − 4z4

1z
2
2 + 7z4

2 − 4z2
1z

4
2

+ z4
1z

4
2 − 30z2

3 + 14z2
1z

2
3 − 4z4

1z
2
3 + 14z2

2z
2
3 + 12z2

1z
2
2z

2
3 − z4

1z
2
2z

2
3

− 4z4
2z

2
3 − z2

1z
4
2z

2
3 + 7z4

3 − 4z2
1z

4
3 + z4

1z
4
3 − 4z2

2z
4
3 − z2

1z
2
2z

4
3 + z4

2z
4
3 − 30z2

4

+ 14z2
1z

2
4 − 4z4

1z
2
4 + 14z2

2z
2
4 + 12z2

1z
2
2z

2
4 − z4

1z
2
2z

2
4 − 4z4

2z
2
4 − z2

1z
4
2z

2
4 + 14z2

3z
2
4

+ 12z2
1z

2
3z

2
4 − z4

1z
2
3z

2
4 + 12z2

2z
2
3z

2
4 + 6z2

1z
2
2z

2
3z

2
4 − z4

2z
2
3z

2
4 − 4z4

3z
2
4

− z2
1z

4
3z

2
4 − z2

2z
4
3z

2
4 + 7z4

4 − 4z2
1z

4
4 + z4

1z
4
4 − 4z2

2z
4
4 − z2

1z
2
2z

4
4 + z4

2z
4
4

− 4z2
3z

4
4 − z2

1z
2
3z

4
4 − z2

2z
2
3z

4
4 + z4

3z
4
4. (A.3)

It takes only a few seconds for any formal manipulation software to check that this quantity
indeed coincides with the Pfaffian expression of equation (2.87).

We also display the value of the component �
(6)
0 for N = 6, as obtained from

formula (2.40) and with extensive use of the modified Leibniz formula (2.44):

�(6) = a1,2b1,2a1,3b1,3a2,3b2,3a2,4a3,4a3,5a4,5c4,5a4,6c4,6a5,6c5,6

× (a1,6b1,6a2,6b2,6b3,4b3,5(a1,5b1,5b2,4 + 2c2,5(1 + b5,4))

+ 4a1,6a2,6b3,4c3,6(a1,5b2,4c2,6 + 2b1,6(1 + b5,4))
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+ 4c3,5c3,6(1 + b4,6)(1 + b5,6)(a1,5b1,6b2,4 + 2c2,6(1 + b5,4))

+ 2c3,5c3,6(1 + b4,6)(a1,5a2,6b1,5b2,4c2,6 + 2a1,5b1,5b1,6(a1,6 − b2,4)

+ 2a1,6b1,4b1,6(b2,5 − a1,5)) + 2c3,6b3,4(1 + b5,6)(a1,5a1,6b1,5b1,6b2,4

+ 2b1,4a2,6c2,6(b2,5 − a1,5) + 2a1,5b1,5c2,6(1 + b4,6))). (A.4)

As all a, b, c tend to 1 in the homogeneous limit where all z → 0, we read off (A.4) that
�

(6)
0 (0, 0, 0, 0, 0, 0) = 129. As expected for the case of arbitrary even N, the result for �

(6)
0

is an integer linear combination of products of a, b, c, with coefficients ± powers of 2.

Appendix B. Entries of the ground-state vector in the dense O(1) loop model with open
boundaries

In this appendix, we give the entries of �(N) and their sum Z(N) in the non-crossing loop case
for N = 4. In the notations of section 3, and for N = 4, the two components of �(4) read

�(4) = (qz1 − z2)(q
2z1z2 − 1)(q2z3 − z4)(qz3z4 − 1)

�(4) = (qz2 − z3)((q
2z1 − z4)(1 + z1z2z3z4) + (q2z4 − z1)(z1z4 + z2z3) (B.1)

+ (q2 − 1)z1z4(z2 + z3)).

These components sum to

Z(4)(z1, z2, z3, z4) = (1 + z1z2z3z4)(z1z2 + z1z3 + z2z3 + z1z4 + z2z4 + z3z4)

+ (z1 + z2)(z3 + z4)(z1z2 + z3z4) + (z1z3 + z2z4)(z1z4 + z2z3) + 3z1z2z3z4

(B.2)

which may easily be checked against equations (3.26) and (3.27).
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